电火花加工的微观过程
作者:苏州中航长风数控科技有限公司 | 来源:www.szcfedm.com | 浏览次数:
了解放电加工的机理,即金属材料蚀除的微观过程,有助于掌握电火花加工中各种基本规律,并能对脉冲电源、机床设备等提出合理的要求。
由于放电时间很短,放电间隙很小,所以放电加工的机理相当复杂。实验结果表明,电火花加工的微观过程是电力、磁力、热力、流体动力、电化学和胶体化学等综合作用的结果。这一过程大致可分为以下几个连续的阶段:极间介质的击穿与放电;能量的转换、分布与传递;电极材料的抛出;极间介质的消电离。
1.极间介质的击穿与放电
由于工具电极和工件的微观表面是凹凸不平的,极间距离又很小,因而极间电场强度是很不均匀的,两极之间离得最近的突出点或尖端处的电场强度一般为最大。当阴极表面某处的场强增加到105V/mm以上时,就会产生场致电子发射,由阴极表面向阳极逸出电子。在电场作用下负电子高速向阳极运动并撞击工作液介质中的分子或中性原子,产生碰撞电离,形成带负电的粒子(主要是电子)和带正电的粒子(正离子),导致带电粒子雪崩式增多,使介质击穿而放电。从雪崩电离开始到建立放电通道的过程非常迅速,一般小于0.1μs,间隙电阻从绝缘状况迅速降低到几分之一欧姆,间隙电流迅速上升到最大值(几安到几百安)。由于放电通道直径很小,所以通道中的电流密度可高达105~106 A/cm。间隙电压则由击穿电压迅速下降到火花维持电压一般为(25V),电流则由0上升到某一峰值电流。图4.1.4所示为矩形波脉冲放电时的电压和电流波形。
放电通道是由数量大体相等的带正电(正离子)和带负电粒子(电子)以及中性粒子(原子或分子)组成的等离子体。带电粒子高速运动时相互碰撞,产生大量的热,使通道温度相当高,但分布是不均匀的,从通道中心向边缘逐渐降低,通道中心温度可高达10000℃以上。由于放电时电流产生磁场,磁场反过来对电子流产生向心的磁压缩效应。由于受到放电时的磁压缩效应和周围介质动力压缩效应的作用,通道瞬间扩展受到很大阻力,放电开始阶段通道截面很小,其初始压力可达数十甚至上百兆帕。高压放电通道以及瞬时形成的气体分子团(以后发展成气泡)急速扩展,并产生强烈的冲击波向四周传播。在放电过程中,同时还伴随着一系列派生现象,其中有热效应、电磁效应、光效应、声效应及频率范围很宽的电磁波辐射和爆炸冲击波等。
图4.1.4矩形波脉冲放电时的电压(u)和电流(i)波形
2.能量的转换、分布与传递
极间介质一旦被击穿,脉冲电源就通过放电通道瞬时释放能量,把电能转换为热能、动能、磁能、光能、声能及电磁波辐射能等(其中大部分转换成热能),使两极放电点和通道本身温度剧增,该处即产生局部的熔化或汽化,通道中的介质也汽化或热裂分解。
脉冲电源释放的能量分布在放电通道、阳极上与阴极上。放电通道中的能量主要消耗在热辐射和热传导上。随着极间距离、电位梯度、放电电流和放电时间的增大,放电通道中消耗的能量亦增大。
传递给电极上的能量是产生材料腐蚀的原因。在放电过程中,通道中的大量电子在电场的作用下奔向阳极并以很高的速度轰击阳极表面,将动能转变为热能。而通道中的正离子则在电场作用下奔向阴极,也以很高的速度轰击阴极表面,将其动能转变为热能。这些热源产生了很高的温度熔化和汽化了电极材料。
3.电极材料的抛出
传递给电极的能量转化成热能,并在电极表面形成一个瞬时高温热源。在脉冲放电初期,高温热源将使电极放电点部分材料汽化,在汽化过程中,产生很大的热爆炸力,使被加热至熔化状态的材料挤出或溅出。电极蒸气、介质蒸气以及放电通道的急剧膨胀也会产生相当大的压力,引起气化爆炸,把熔融金属抛出。
同时,放电过程由于气化了得气体体积不断向外膨胀产生的扩张“气泡”。这些气泡上下、内外的瞬时压力并不相等,压力高处的熔融金属液体和蒸气就会喷爆而出,抛出进入工作液中。
实际上熔化和汽化了的金属在抛离电极表面时,向四处乱射飞溅,除绝大部分抛入工作液中收缩成球状小颗粒外,有一小部分飞溅、附着、覆盖在相对的电极表面上去了。在某些条件下,这种互相飞溅覆盖现象的产物可以用来补偿电极工具在加工中的损耗。
总之,电极材料的抛出是热爆炸力、磁流体动力、流体动力等综合作用的结果。人们对这种复杂的抛出机理的认识仍不完善,目前还在不断深化之中。
4.极间介质的消电离
一次脉冲放电结束,此后还应有一段间隔时间,使间隙介质消电离,即放电通道中的带电粒子复合为中性粒子,恢复本次放电通道处间隙介质的绝缘强度,以免总是重复在同一处发生放电而导致电弧放电,这样可以保证按两极相对最近处或电阻率最小处形成下一击穿放电通道。
在加工过程中产生的电蚀产物(如金属徽粒、炭粒、气泡等)如果来不及排除、扩散出去,就会改变间隙介质的成分和降低绝缘强度,火花放电时产生的热量如不及时传出,带电粒子的自由能不易降低,将大大减少复合的概率,使消电离过程不充分,结果将使下一个脉冲放电通道不能顺利地转移到其他部位,而始终集中在某一部位,使该处介质局部过热而破坏消电离过程,脉冲火花放电将转变为有害的稳定电弧放电,同时工作液局部高温分解后可能结炭,在该处聚成焦粒而在两极间搭桥,使加工无法进行下去。
由此可见,在电火花加工过程中,为了保证加工的正常进行,在先后两次脉冲放电之间一般都应有足够的停歇时间,其最小脉冲停歇时间的选择,不仅要考虑介质消电离的时间,而且还要考虑电蚀产物扩散和排出的难易程度。